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Abstract
This paper is devoted to the solution of the bi-fractional differential equation(C

Dα
t u

)
(t, x) = λ

(L
Dβ

x u
)
(t, x) (t > 0,−∞ < x < ∞)

for real 0 < α � 1, β > 0 and λ �= 0, with the initial conditions

lim
x→±∞ u(t, x) = 0 u(0+, x) = g(x).

Here
(C

Dα
t u

)
(t, x) is the partial derivative coinciding with the Caputo fractional

derivative for 0 < α < 1 and with the usual derivative for α = 1, while(L
D

β
x u

)
(t, x)) is the Liouville partial fractional derivative

(L
D

β
t u

)
(t, x)) of

order β > 0. The Laplace and Fourier transforms are applied to solve the
above problem in closed form. The fundamental solution of these problems
is established and its moments are calculated. The special case α = 1/2
and β = 1 is presented, and its application is given to obtain the Dirac-type
decomposition for the ordinary diffusion equation.

PACS numbers: 02.30.Jr, 02.30.Gp
Mathematics Subject Classification: 35G10, 26A33, 33E12, 44E10, 42E38

1. Introduction

This paper deals with the solution of the linear fractional differential equation(C
Dα

t u
)
(t, x) = λ

(L
Dβ

x u
)
(t, x) (t > 0,−∞ < x < ∞, 0 < α < 1, β > 0) (1)

with 0 < α � 1, β > 0 and real λ ∈ R = (−∞,∞), λ �= 0. Here
(C

Dα
t u

)
(t, x) is the partial

derivative defined by
(C

Dα
t u

)
(t, x) = 1

�(1 − α)

∂

∂t

∫ t

0

u(τ, x) − u(0, x)

(t − τ)α
dτ (2)
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for 0 < α < 1, �(z) being the Gamma function [3, section 24.2], and by
(C

D1
xu

)
(t, x) = ∂u(t, x)

∂t
(3)

for α = 1, while
(L

D
β
x u

)
(t, x) is the so-called Liouville partial fractional derivative of order

β > 0 defined by
(L

Dβ
x u

)
(t, x) = 1

�(m − β)

(
∂

∂x

)m ∫ x

−∞

u(t, y)

(x − y)β−m+1
∂y (x ∈ R,m = −[−β]) (4)

[β] being the integer part of β; see [14, section 24.2].
A one-dimensional fractional derivative of the form (2) defined by

(C
Dα

t f
)
(t) = 1

�(1 − α)

d

dt

∫ t

0

f (τ) − f (0)

(t − τ)α
dτ (0 < α < 1) (5)

is known as the Caputo fractional derivative of order α (for example, see [13], equation 2.138).
Therefore we call the derivative in (2) the partial Caputo fractional derivative. Such a Caputo
fractional differential operator can be considered as a regularized version of the Riemann–
Liouville fractional differential operator. In particular, if f (x) is continuously differentiable,
(5) takes the form

(CDα
t f

)
(t) = 1

�(1 − α)

∫ t

0

f ′(τ )

(t − τ)α
dτ (0 < α < 1) (6)

which is often used as the definition of the Caputo fractional derivative.
When β = 1,(L

D1
xu

)
(t, x) = ∂u(t, x)

∂x
(7)

and equation (1) takes the form
(C

Dα
t u

)
(t, x) = λ

∂u(t, x)

∂x
(t > 0, x ∈ R; 0 < α � 1). (8)

Such an equation with α = 1/2 arises in the analysis of diffusion mechanisms with
internal degrees of freedom while studying the square root of the one-dimensional diffusion
equation ut − uxx = 0; see [18, 19].

We note that the bi-fractional differential equations of type (1), with particular values of
the parameters α and β and different fractional derivatives, appear in a natural way to model
the dynamics of processes involving different scales of space and/or time and in the theory
of complex systems in many branches of applied sciences and engineering. In particular, the
fractional differential operators have been used as suitable tools for mathematical modelling of
anomalous diffusion (sub- and super-diffusion) through the use of the well-known continuous
time random walk (CTRW) method, the Lévy stable distributions, the generalized central limit
and the Laplace and Fourier integral transforms (see, for instance, [17, 9, 7, 10]).

We must stress that there are many different fractional differential operators which
generalize the ordinary one. From the point of view of applications, the main property
of these fractional operators is that they are non-local.

We must point out here that there are several pathways to the use of fractional models
of the form (1) in different applied fields; for instance, see [9, 7]. In particular, in the case
when mathematical models are connected with anomalous diffusion we could use the CTRW
approach introduced by Montroll [11], or through the Langevin equation approach (see [5]),
or by generalization of the classical first Fick’s law combined with the conservation law
(for example, see [12]) and others. When we introduce in the ordinary diffusion equation
a time-fractional derivative, such as the Riemann–Liouville or the Caputo, we obtain good
models for the sub-diffusion processes, but not for the case of super-diffusion. The inversion
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of the well-known Riesz fractional integration operator (for example, see [14, section 25]) is
probably the best operator that can be used to generalize the space derivative to the model
of super-diffusion problems keeping the symmetrical property of the fundamental solution of
bi-fractional equations in connection with the CTRW method.

Here we use the Liouville operator as the space-fractional derivative because we would
like to apply the solution of equation (1) to the Dirac-type decomposition of the ordinary
diffusion equation. The Riesz fractional derivative of order α > 0 is not suitable for such
a purpose, because such a derivative, represented by a hypersingular integral, in the case
α = 1, generally speaking, does not coincide with the usual derivative; for example, see [14,
sections 25–26].

In this paper we study the boundary value problem for equation (1) with the conditions

lim
x→±∞ u(t, x) = 0 u(0+, x) = g(x). (9)

This paper is organized as follows. Section 2 is devoted to obtaining the solution in closed
form of the problem (8), (9). Using the Laplace and the Fourier transforms we deduce the
explicit solution of this problem in terms of Mittag–Leffler function Eα(z); for example, see
[4, section 18.1]. In section 3 we show that the fundamental solution of the problem (8), (9) can
be expressed in terms of the Wright function ϕ(α, β; z) defined for complex z ∈ C, α > −1
and β ∈ R by the series

ϕ(α, β; z) =
∞∑

n=0

zn

�(αn + β)n!
(10)

(see [4, 18.1(27)]), and we evaluate the moments of this fundamental solution. Section 4
deals with the explicit solution of the problem (1), (9) and with the evaluation of its moments.
In section 5 we present the special case of the problem (8), (9) with α = 1/2 and β = 1.
Finally, we apply this result to obtain the explicit solution of a Dirac-type decomposition of
the ordinary diffusion equation.

2. Solution of the time-fractional problem

To obtain the explicit solution of the problem (8), (9) we shall use the well-known Laplace
transform of a function u(t, x) with respect to t:

(Lt u)(s, x) =
∫ ∞

0
e−stu(t, x) dt (11)

for any fixed x ∈ R, and the Fourier transform with respect to x:

(Fxu)(t, k) =
∫ ∞

−∞
eikxu(t, x) dx (12)

for any fixed t ∈ R+, and the inverse Laplace transform with respect to s:

(
L−1

s u
)
(t, x) = 1

2π i

∫ γ−i∞

γ +i∞
estu(s, x) ds (13)

with a fixed γ ∈ R, and the inverse Fourier transform with respect to k:

(
F−1

k u
)
(t, x) = 1

2π

∫ ∞

−∞
e−ikxu(t, k) dk (14)

together with the relations(
L−1

s Lt u
)
(t, x) = u(t, x)

(
F−1

k Fxu
)
(t, x) = u(t, x). (15)
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We shall use (11)–(15) in spaces of classical and generalized functions. The
characterization of classical functions, for which the above one-dimensional direct and inverse
Laplace and Fourier transforms exist and the relations in (15) hold, can be found, for example,
in the books by Dithin and Prudnikov [2, chapters 1, 2] and Sneddon [16, sections 3–4]. We
only indicate that the integrals in (11)–(14) are understood, as usual, in the sense of principal
value, and the real constant γ in (13) can be chosen such that γ > σc, where σc is the so-called
abscissa of convergence of the integral (11); see [2, chapter 2, section 1].

We denote by LF = L(R+) × F(R), R+ = (0,∞), the space of functions u(t, x) such
that there exist the Laplace transform (11) and the Fourier transform (12), and we shall use
the following notation:

û(s, k) ≡ (FxLt u)(s, k) =
∫ ∞

−∞

∫ ∞

0
e−st eikxu(t, x) dt dx (t > 0). (16)

Lemma 1. Let g(x) be a function such that there exists the Fourier transform G(k):

G(k) = (Fg)(k) =
∫ ∞

−∞
eiktg(t) dt (k ∈ R). (17)

Then the solution u(x, t) ∈ LF of the problem (8), (9) is given by the formula

u(t, x) = 1

2π i

∫ γ +i∞

γ−i∞
est sα−1 ds

1

2π

∫ ∞

−∞

G(k)

sα + iλk
e−ikx dk (18)

provided that the integral on the right-hand side exists.

Proof. We apply the Laplace transform (11) to equation (8) and use the following formula for
the Laplace transform of the Caputo derivative (2) [13, (2.140)]:(

Lt
CDα

t u
)
(s, x) = sα(Lt u)(s, x) − sα−1u(0+, x) (0 < α � 1) (19)

where sα is understood, as usually, as the corresponding value of the main branch of the
analytic function sα in the complex plane s with the cut along the positive half-axis R+. Note
that (19) yields the known formula for the Laplace transform of the usual derivative when
α = 1. Making use of such an application of the Laplace transform (11) to (8) and taking the
condition u(0+, x) = g(x) into account, we have

sα(Lt u)(s, x) − sα−1g(x) = λ
∂

∂x
(Lt u)(s, x). (20)

Applying the Fourier transform (12) and using the formula for the Fourier transform of the
ordinary derivatives

(FxDxv)(s, k) = (−ik)(Fxv)(s, k)

(
Dx = ∂

∂x

)
(21)

in accordance with (12) and (16) we obtain

sαû(s, k) − sα−1G(k) = (−iλk)û(s, k). (22)

From here we deduce the following relation:

û(s, k) = sα−1G(k)

sα + iλk
. (23)

Applying to (23) the inverse Laplace and inverse Fourier transforms and taking (13)–(15) into
account, we obtain the solution (18) of the problem (8), (9). �

Remark 1. If G(k) satisfy some additional conditions, the inner integral in (18) can be
evaluated by using the residue theory; for example, see [2, chapter 2, section 1].
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The next assertion gives another representation for the solution u(t, x) of the problem (8),
(9) in terms of the special Mittag–Leffler function Eα(z) defined for z, α ∈ C by

Eα(z) =
∞∑

j=0

zj

�(αj + 1)
(24)

see [4, section 18.1].

Lemma 2. Let g(x) be a function such that there exists its Fourier transform G(k). Then the
solution u(x, t) ∈ LF of the problem (8), (9) has the form

u(t, x) = 1

2π

∫ +∞

−∞
Eα(−iλktα)G(k) e−ikx dk (25)

provided that the integral on the right-hand side exists.

Proof. It is known that the Laplace transform of the Mittag–Leffler function Eα(µtα) is given
by the formula

(LEα(µtα))(s) = sµ−1

sα − µ
(|µs−α| < 1) (26)

for example, see [4, section 18.1]. Applying to (23) the inverse Laplace transform and using
the first relation in (15) and (26) with µ = −iλk, we have

(Fxu)(t, k) = Eα(−iλktα)G(k). (27)

Then, the application of the inverse Fourier transform to (27) and the second formula in (15)
yields the explicit solution (25).

The final assertion in this section presents a solution of the problem (8), (9) for the analytic
function g(x). �

Lemma 3. Let g(x) be an analytic function of the real variable x such that

lim
|x|→∞

g(j)(x) = 0 (j = 0, 1, 2, . . .). (28)

Then the solution u(t, x) of the problem (8), (9) is given by

u(t, x) =
∞∑

j=0

(λtα)j

�(αj + 1)
g(j)(x) (29)

provided that the series in (29) converges for any x ∈ R and any t > 0.

Proof. Substituting (24) into (25) and interchanging the order of integration and series (which
is possible by the uniform convergence of series represented by the entire Mittag–Leffler
function), we have

u(t, x) = 1

2π

∫ +∞

−∞


 ∞∑

j=0

(−iλktα)j

�(αj + 1)


 G(k) e−ikx dk

=
∞∑

j=0

(λtα)j

�(αj + 1)

1

2π

∫ +∞

−∞
(−ik)jG(k) e−ikx dk. (30)

Using the known formula

1

2π

∫ +∞

−∞
(−ik)jG(k) e−ikx dk = (

F−1
k G

)(j)
(x) = g(j)(x) (j = 1, 2, . . .) (31)
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from (30) and (31) we deduce the representation for the solution u(t, x) of the problem (8),
(9) in the form (29). �

Remark 2. Another proof of lemma 3 can be given by the substitution of (29) into (8) and
carrying out term by term fractional differentiation, which is possible by the analyticity of
g(x) and the uniform convergence of the power series of t represented by the Mittag–Leffler
function (24).

Example 1. The conditions of lemma 3 hold for the following problem:
(C

Dα
t u

)
(t, x) = λ

∂u(t, x)

∂x
(t > 0, x ∈ R)

(32)
lim

|x|→∞
u(t, x) = 0 u(0+, x) = e−µ|x| (µ > 0)

and its solution is given by

u(t, x) = e−µ|x|Eα(−µλtα). (33)

Example 2. If the conditions of lemma 3 are satisfied, then the problem
∂u(t, x)

∂t
= λ

∂u(t, x)

∂x
(t > 0, x ∈ R) lim

x→±∞ u(t, x) = 0 u(0+, x) = g(x) (34)

with λ ∈ R has the well-known explicit solution

u(t, x) = g(x + λt). (35)

3. Fundamental solution of the time-fractional problem

First of all we note that the method for the solution of the initial value problem (8), (9) in
the space LF = L(R+) × F(R), used in section 2 and based on the Laplace and Fourier
transforms, can also be applied in the space LF ′ = L(R+)×F ′(R), where F ′(R) is a space of
Fourier transform of the generalized function, if we replace the Fourier transform in (12) by
the corresponding Fourier transform of generalized functions. For example, we can use any
of the well-known spaces F ′(R) = S ′ or F ′(R) = D′. The Fourier transform in the spaces
S′ and D′ was introduced by Schwartz [15] and Gelfand and Shilov [6], respectively. In this
connection see also the books by Brychkov and Prudnikov [1], Vladimirov [20] and Zemanian
[21].

Thus we can consider the initial value problem of the form (8), (9), in which g(x) is
replaced by the Dirac delta function δ(x)

(C
Dα

t u
)
(t, x) = λ

∂u(t, x)

∂x
(t > 0, x ∈ R) 0 < α � 1

(36)
lim

|x|→∞
u(t, x) = 0 u(0+, x) = δ(x).

The solution u(t, x) of this problem is known as the fundamental solution.

Theorem 1. The fundamental solution u(t, x) ∈ LF ′ of the problem (36) is given by

u(t, x) = 1

2π i

∫ γ +i∞

γ−i∞
est sα−1 ds

1

2π

∫ ∞

−∞

1

sα + iλk
e−ikx dk (γ ∈ R). (37)

Moreover the following function also represents the fundamental solution of the problem (36):

u(t, x) = 1

2π

∫ +∞

−∞
Eα(−iλktα) e−ikx dk (38)

provided that the integrals on the right-hand sides of (37) and (38) exist.
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Proof. It is known that

δ(x) ∈ D′ and (Fxδ)(k) = 1 (39)

see, for example, [1, chapter 2, section 2 and chapter 8, section 7, no 662]. Then G(k) = 1
and using the same arguments as in the proofs of lemmas 1 and 2 we obtain the solutions
u(t, x) in the forms (18) and (25) with G(k) = 1, which yield the fundamental solution of the
problem (36) in the forms (37) and (38), respectively. �

Corollary 1. The fundamental solution of the problem (36) has the explicit form

u(t, x) =




0 x > 0

− i

2πλ

∫ γ +i∞

γ−i∞
est sα−1 esαx/λ ds x < 0

(40)

when λ > 0, while for λ < 0

u(t, x) =




i

2πλ

∫ γ +i∞

γ−i∞
est sα−1 esαx/λ ds x > 0

0 x < 0.

(41)

Moreover, these expressions mean that the problem (36) has the fundamental solution
u(t, x) = 0 in the cases x > 0, λ > 0 and x < 0, λ < 0.

Proof. We apply the residue theory to evaluate the inner integral in (37) (see, for example, [2,
chapter 2, section 1]). If x < 0, then∫ ∞

−∞

1

sα + iλk
e−ikx dk = 2π i res

k=isα/λ

[
1

sα + iλk
e−ikx

]

=



2π

λ
esαx/λ λ > 0

0 λ < 0
(42)

while for x > 0∫ ∞

−∞

1

sα + iλk
e−ikx dk = −2π i res

k=isα/λ

[
1

sα + iλk
e−ikx

]

=



0 λ > 0

−2π

λ
esαx/λ λ < 0.

(43)

Substituting this relation into (37) we find the solution of the problem (36) in the forms (40)
and (41). �

Corollary 2. The fundamental solution of the problem (36) is given in terms of the Wright
function (10) by

u(t, x) =



0 x > 0

1

λtα
ϕ

(
−α, 1 − α; x

λtα

)
x < 0

(44)

for λ > 0 and

u(t, x) =



− 1

λtα
ϕ

(
−α, 1 − α; x

λtα

)
x > 0

0 x < 0
(45)

for λ < 0.
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Proof. We use the notation

v(t, x) = i

2πλ

∫ γ +i∞

γ−i∞
est sα−1 esαx/λ ds. (46)

Expanding the exponential function esαx/λ in a Taylor series and interchanging the order of
integration and series (which is possible by the uniform convergence of the exponential series),
we have

v(t, x) = i

2πλ

∞∑
n=0

(x

λ

)n 1

n!

∫ γ +i∞

γ−i∞
sαn+α−1 est ds (γ ∈ R). (47)

Performing the substitution st = σ , transforming the contour into the Hankel contour [3,
section 1.6] and using the Hankel representation for the Gamma function [3, section 1.6 (2)]

1

�(z)
= 1

2π i

∫ 0+

−∞
et t−z dt | arg(t)| � π (48)

we obtain

v(t, x) = − 1

λtα

∞∑
n=0

1

�(−αn + 1 − α)n!

( x

λtα

)n

. (49)

Taking (10) into account, we deduce the explicit representation for the v(t, x) in terms of the
Wright function:

v(t, x) = − 1

λtα
ϕ

(
−α, 1 − α; x

λtα

)
. (50)

Thus the fundamental solution in (40) and (41) takes the forms (44) and (45), respectively.
�

Sometimes the Wright function (10) is represented by

W(z;α, β) = ϕ(α, β; z) (51)

for example, see [13, (1.156)]. Then (50) can be rewritten as

v(t, x) = − 1

λtα
W

( x

λtα
;−α, 1 − α

)
(52)

and corollary 2 can be reformulated as follows:

Corollary 3. The fundamental solution of the problem (36) is given by

u(t, x) =



0 x > 0

1

λtα
W

( x

λtα
;−α, 1 − α

)
x < 0

(53)

and

u(t, x) =



− 1

λtα
W

( x

λtα
;−α, 1 − α

)
x > 0

0 x < 0
(54)

for λ > 0 and λ < 0, respectively.

We can also use the special case of (51) in the form [13, (1.160)]

M(z;α) = W(−z;−α, 1 − α) =
∞∑

n=0

(−z)n

�(−αn + 1 − α)n!
(55)

which leads to
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Corollary 4. The fundamental solution of the problem (36) is represented by

u(t, x) =



0 x > 0

1

λtα
M

(
− x

λtα
;α

)
x < 0

(56)

and

u(t, x) =



− 1

λtα
M

(
− x

λtα
;α

)
x > 0

0 x < 0.

(57)

for λ > 0 and λ < 0, respectively.

Now we calculate the moments of the fundamental solution, by using the well-known
property:∫ +∞

−∞
xnu(t, x) dx = (−i)n

[
dn

dkn
(Fxu)(t, k)

]
k=0

(n = 0, 1, 2, . . .) (58)

and relation (27) with G(k) = 1

(Fxu)(t, k) = Eα(−iλktα). (59)

Substituting (59) into (58) and taking (24) into account we calculate the moments as
follows:

∫ +∞

−∞
xnu(t, x) dx = (−i)n


 dn

dkn

∞∑
j=0

(−iλk)j tαj

�(αj + 1)




k=0

= (−i)n


 ∞∑

j=n

(−iλ)jkj−ntαj

�(αj + 1)

�(j + 1)

�(j − n + 1)




k=0

and hence ∫ +∞

−∞
xnu(t, x) dx = (−λtα)n

�(n + 1)

�(αn + 1)
(n = 0, 1, 2, . . .). (60)

From here we deduce the formula for the moments of even order:∫ +∞

−∞
x2nu(t, x) dx = �(2n + 1)

�(2αn + 1)
(λtα)2n (n = 0, 1, 2, . . .). (61)

Remark 3. Formula (61) is also true for the even moments of the fundamental solution

u(t, x) = 1

2λtα
M

( |x|
λtα

;α

)
(62)

of the initial problems for the fractional diffusion-wave equation

(c
D2α

t u
)
(t, x) = λ2 ∂2

∂x2
u(t, x) (t > 0, x ∈ R, 0 < α � 1)

(63)
lim

|x|→∞
u(t, x) = 0 u(0+, x) = δ(x) ut (0+, x) = 0.

Such a result was obtained by Mainardi [8].
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4. Solution of general problem

Now we study the general problem (1), (9) seeking the solution in the space LF =
L(R+) × F(R), R+ = (0,∞). The following result generalizing the ones in lemmas 1
and 2 holds.

Lemma 4. Let g(x) be a function such that there exists the Fourier transform G(k) in (17).
Then the solution u(x, t) ∈ LF of the problem (1), (9) has the form

u(t, x) = 1

2π i

∫ γ +i∞

γ−i∞
est sα−1 ds

1

2π

∫ ∞

−∞

G(k)

sα − λ(−ik)β
e−ikx dk (γ ∈ R) (64)

and also

u(t, x) = 1

2π

∫ +∞

−∞
G(k)Eα(λ(−ik)βtα) e−ikx dk (65)

provided that the integrals on the right-hand sides of (64) and (65) exist.

Proof. We shall use the formula for the Fourier transform of the Liouville derivative of order
β > 0 [14, (7.4)]:(

Fx

(L
Dβ

x u
))

(t, k) = (−ik)β(Fu)(t, k) (β > 0). (66)

Applying (11) and (12) to equation (1) and taking into account the condition u(0+, x) = g(x)

and (66), we obtain the relation of the form (23) for û(s, k):

û(s, k) = sα−1G(k)

sα − λ(−ik)β
. (67)

Using the inverse Laplace and Fourier transforms and taking the same arguments, as was done
in the proofs of lemmas 1 and 2 in section 2, we obtain the solution u(t, x) of the problem (1),
(9) in the forms (64) and (65), respectively. �

Theorem 2. The fundamental solution u(t, x) ∈ LF ′ of the problem(C
Dα

t u
)
(t, x) = λ

(L
Dβ

x u
)
(t, x) (t > 0,−∞ < x < ∞, 0 < α < 1, β > 0)

(68)
lim

|x|→∞
u(t, x) = 0 u(0+, x) = δ(x)

is given by

u(t, x) = 1

2π i

∫ γ +i∞

γ−i∞
est sα−1 ds

1

2π

∫ ∞

−∞

1

sα − λ(−ik)β
e−ikx dk (γ ∈ R) (69)

and also by

u(t, x) = 1

2π

∫ +∞

−∞
Eα(λ(−ik)βtα) e−ikx dk (70)

provided that the integrals on the right-hand sides of (69) and (70) exist.

Proof. By (39), G(k) = 1, and the results in (69) and (70) follow from (64) and (65),
respectively.

Now, using formula (58), we calculate the moments of the fundamental solution. By (70),
there holds the relation of the form (59):

(Fxu)(t, k) = Eα(λ(−ik)βtα). (71)
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Substituting this result into (58), we have for each n ∈ N
∫ +∞

−∞
xnu(t, x) dx = (−i)n


 dn

dkn

∞∑
j=0

(−ik)βj (λtα)j

�(αj + 1)




k=0

= (−i)n


 ∞∑

j=1

(−i)βj kβj−n(λtα)j�(βj + 1)

�(αj + 1)�(βj − n + 1)




k=0

. (72)

Then we obtain

if β �= r

∫ +∞

−∞
xnu(t, x) dx =

{
0 n < β

� n > β
(73)

if β = r

∫ +∞

−∞
xnu(t, x) dx =




0 n �= βm

(−1)βm(λtα)m
�(βm + 1)

�(αm + 1)
n = βm

(74)

where r = 1, 2, 3, . . . and m = 0, 1, 2, . . . .

So we can conclude that there does not exist any moment of the fundamental solution
u(t, x) when 0 < β < n. �

5. Special case and applications

We consider the special case α = 1/2 of the initial value problem (1), (9) with g(x) = δ(x)(C
D

1/2
t u

)
(t, x) = λ

∂u(t, x)

∂x
(t > 0, x ∈ R) (75)

lim
|x|→∞

u(t, x) = 0 u(t, x) = δ(x). (76)

According to (44) and (45), its fundamental solution is given by

u(t, x) =




0 x > 0

1

λ
√

t
ϕ

(
−1

2
,

1

2
; x

λ
√

t

)
x < 0

(77)

for λ > 0, and by

u(t, x) =




− 1

λ
√

t
ϕ

(
−1

2
,

1

2
; x

λ
√

t

)
x > 0

0 x < 0
(78)

for λ < 0. It is directly verified that

ϕ

(
−1

2
,

1

2
; z

)
= 1√

π
exp

(
−z2

4

)
(79)

and hence the fundamental solution in (77) and (78) takes the form

u(t, x) =




0 x > 0

1

λ
√

tπ
exp

(
− x2

4λ2t

)
x < 0

(80)

and

u(t, x) =




− 1

λ
√

tπ
exp

(
− x2

4λ2t

)
x > 0

0 x < 0

(81)

for λ > 0 and λ < 0, respectively.
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In accordance with (60), the moments of this fundamental solution are given by∫ +∞

−∞
xnu(t, x) dx = (−λ

√
t)n

�(n + 1)

�[(n + 2)/2]
(n = 0, 1, 2, . . .). (82)

In particular, the fundamental solution of the problem (75), (76) with λ = 1 is given by

u(t, x) =



0 x > 0
1√
tπ

exp

(
−x2

4t

)
x < 0

(83)

while for λ = −1 by

u(t, x) =




1√
tπ

exp

(
−x2

4t

)
x > 0

0 x < 0.

(84)

By (82), the moments of the fundamental solutions of the problem (75), (76) with λ = 1 and
λ = −1 are represented by∫ +∞

−∞
xnu(t, x) dx = (−√

t)n
�(n + 1)

�([n + 2]/2)
(n = 0, 1, 2, . . .) (85)

and ∫ +∞

−∞
xnu(t, x) dx = tn/2 �(n + 1)

�([n + 2]/2)
(n = 0, 1, 2, . . .) (86)

respectively.
Finally, we give the application of the above results to the equation of the form (75) arising

in the analysis of diffusion mechanisms with internal degrees of freedom while studying the
root square of the one-dimensional diffusion equation ut − uxx = 0; see [18, 19].

If we use the property ∂
1/2
t ∂

1/2
t u = ∂tu, being held for ‘sufficiently good’ functions

u(t, x), for instance when u(t, x) is a continuous function in t, then ut − uxx = 0 can be
rewritten in the following form [18]:(

A∂
1/2
t + B

∂

∂x

)
ψ(t, x) = 0 ψ(t, x) =

(
u(t, x)

v(t, x)

)
(87)

where A and B are 2 × 2 matrices satisfying the conditions:

A2 = I B2 = −I AB + BA = 0 (88)

and I is the identity operator. One of the possible choices, according to Pauli’s algebra,

is A = ( 0 1
1 0

)
and B = ( 0 1

−1 0

)
and, therefore, the system (87) is reduced to the Dirac-type

equations

∂
1/2
t v(t, x) +

∂

∂x
v(t, x) = 0 (89)

∂
1/2
t u(t, x) − ∂

∂x
u(t, x) = 0. (90)

Now, if we put ∂
1/2
t = CD

1/2
t , then equations (89) and (90) are special cases of equation (75)

with λ = −1 and λ = 1, respectively.

Remark 4. Formulae (64) and (65) can be used to obtain the explicit solutions of more general
Dirac-type decompositions of the diffusion equations.
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